metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetraaquabis[2-(2-oxo-2,3-dihydro-1,3benzoxazol-3-yl)acetato]zinc

Jamshid Ashurov,^a Gavhar Karimova,^b* Nasir Mukhamedov,^c Nusrat A. Parpiev^b and Bakhtijar Ibragimov^a

^aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 83, Tashkent 100125, Uzbekistan, ^bThe National University of Uzbekistan named after Mirzo Ulugbek, Faculty of Chemistry, University Str. 6, Tashkent 100779, Uzbekistan, and ^cS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan

Correspondence e-mail: gavhar1979.79@mail.ru

Received 3 February 2011; accepted 3 March 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.053; wR factor = 0.150; data-to-parameter ratio = 11.6.

The Zn^{II} ion in the title compound, $[Zn(C_9H_6NO_4)_2(H_2O)_4]$, is located on an inversion center and is octahedrally coordinated by two 2-(2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl)acetate anions in axial sites and four water molecules in equatorial positions. In the crystal, $O-H \cdots O$ hydrogen bonds between the coordinated water molecules and carbonyl–carboxylate O atoms lead to pleated sheets parallel to (001).

Related literature

For the synthesis of 3-alkanoic acid derivatives of 2(3H)benzoxazolone, see: Lespagnol *et al.* (1967). For the biological activity of 2(3H)-benzoxazolone derivatives, see: Önkol *et al.* (2004). For the structure of a 2(3H)-benzoxazolone metal complex, see: Wagler & Hill (2008).

Experimental

Crystal data

 $[Zn(C_9H_6NO_4)_2(H_2O)_4]$ $M_r = 521.73$ Monoclinic, $P2_1/n$ a = 6.144 (3) Å b = 5.342 (1) Å c = 30.595 (2) Å $\beta = 94.80$ (5)°

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{\rm min} = 0.726, T_{\rm max} = 1.000$

Refinement

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2W - H2B \cdots O4^{i}$	0.83	2.00	2.772 (5)	156
$O1W - H1B \cdots O3^{ii}$	0.84	1.92	2.699 (5)	153
$O1W-H1A\cdots O2^{iii}$	0.82	2.07	2.799 (5)	148

V = 1000.6 (6) Å³

Cu Ka radiation

 $0.50 \times 0.35 \times 0.20 \text{ mm}$

5344 measured reflections

1745 independent reflections

1168 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 2.38 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.065$

151 parameters

 $\Delta \rho_{\rm max} = 0.80 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Z = 2

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x + 1, y, z; (iii) x + 1, y - 1, z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* (Bruker, 1998); software used to prepare material for publication: *SHELXL97*.

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (grant No. FA-F3-T-141).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2002).

References

Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.

- Lespagnol, A., Lespagnol, Ch., Lesieur, D., Marcincal-Lebebvre, A. & Dupont, C. (1967). Chim. Ther. 2, 343–346.
- Önkol, T., Sahin, M. F., Yildirim, E., Erol, K. & Ito, S. (2004). Arch. Pharm. Res. 27, 1086–1092.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wagler, J. & Hill, A. F. (2008). Organometallics, 27, 6579-6586.

supplementary materials

Acta Cryst. (2011). E67, m432 [doi:10.1107/S1600536811007999]

Tetraaquabis[2-(2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl)acetato]zinc

J. Ashurov, G. Karimova, N. Mukhamedov, N. A. Parpiev and B. Ibragimov

Comment

2-Benzoxazolinone derivatives have attracted interest because of their biological activities (Önkol et al., 2004).

The Zn (II) ion lies on an inversion center in an octahedral coordination environment with four O atoms from four coordinated water molecules in the equatorial positions and two O atoms from two ligands in the axial sites.(Fig.1). The coordinated water molecules form strong intermolecular hydrogen bonds with carbonyl and carboxyl O atoms of the ligand (Table 1). Centrosymmetric pairs of O2W–H2B···O4 hydrogen bonds propagating along [010] form pleated strands (Fig.2). Similar strands propagating along [100] (Fig.3) and [110] are formed by O1W–H1B···O3 and O1W–H1A···O2 hydrogen bonds, respectively. Together, these interactions generate sheets parallel to (001).

Experimental

A solution of 2-benzoxazolinon-3-yl-acetate acid (19,3 mg, 0.1 mmol) in ethanol (2 ml) was added to a solution of ZnCl₂.6H₂O (6.8 mg 0.05 mmol) in water (1 ml) and stirred for 10 min at 40 °C. Slow evaporation of the resulting solution gave colourles crystals suitable for X-ray analysis.

Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen were placed in locations derived from a difference map and their positions adjusted to provide reasonable geometries for the coordinated water molecules. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Figures

Fig. 1. Molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. Part of the crystal structure of (I) projected down the *a* axis showing the formation of hydrogen bonded pleated strands along [010].

Fig. 3. Part of the crystal structure of (I) projected down the b axis showing the formation of hydrogen bonded pleated strands along [100].

Tetraaquabis[2-(2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl)acetato]zinc

F(000) = 536 $D_{\rm x} = 1.732 \text{ Mg m}^{-3}$

 θ = 7.6-66.2° μ = 2.38 mm⁻¹ *T* = 293 K Prism, colourless 0.50 × 0.35 × 0.20 mm

Cu K α radiation, $\lambda = 1.54180$ Å Cell parameters from 4608 reflections

Crystal data

$[Zn(C_9H_6NO_4)_2(H_2O)_4]$
$M_r = 521.73$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 6.144(3) Å
<i>b</i> = 5.342 (1) Å
<i>c</i> = 30.595 (2) Å
$\beta = 94.80 \ (5)^{\circ}$
$V = 1000.6 (6) \text{ Å}^3$
Z = 2

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer	1745 independent reflections
Radiation source: Enhance (Cu) X-ray Source	1168 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.065$
Detector resolution: 10.2576 pixels mm ⁻¹	$\theta_{\text{max}} = 66.7^{\circ}, \ \theta_{\text{min}} = 5.8^{\circ}$
ω scans	$h = -7 \rightarrow 6$
Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)	$k = -3 \rightarrow 6$
$T_{\min} = 0.726, \ T_{\max} = 1.000$	$l = -35 \rightarrow 36$
5344 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.150$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0732P)^2 + 0.5645P]$ where $P = (F_o^2 + 2F_c^2)/3$
1745 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
151 parameters	$\Delta \rho_{max} = 0.80 \text{ e} \text{ Å}^{-3}$

0 restraints

$$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen were placed in locations derived from a difference map and their positions adjusted to provide reasonable geometries for the coordinated water molecules. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Zn1	1.0000	0.0000	0.0000	0.0416 (3)
01	0.2330 (6)	0.1894 (7)	0.17363 (12)	0.0481 (9)
02	0.1804 (6)	0.4884 (7)	0.12215 (13)	0.0578 (10)
03	0.5737 (6)	-0.0487 (6)	0.05893 (11)	0.0432 (9)
O4	0.7938 (6)	0.2347 (6)	0.03233 (11)	0.0446 (9)
N1	0.4944 (7)	0.2399 (8)	0.12870 (14)	0.0427 (10)
C1	0.2944 (9)	0.3231 (10)	0.13871 (17)	0.0448 (13)
C2	0.5608 (8)	0.0474 (9)	0.15703 (16)	0.0386 (12)
C3	0.7425 (9)	-0.1051 (10)	0.16032 (18)	0.0469 (14)
H3A	0.8541	-0.0866	0.1418	0.056*
C4	0.7500 (10)	-0.2885 (11)	0.19291 (19)	0.0563 (15)
H4A	0.8694	-0.3959	0.1962	0.068*
C5	0.5830 (10)	-0.3139 (11)	0.22046 (19)	0.0599 (16)
H5A	0.5939	-0.4364	0.2421	0.072*
C6	0.4014 (10)	-0.1616 (11)	0.21642 (18)	0.0547 (15)
H6A	0.2885	-0.1791	0.2346	0.066*
C7	0.3957 (8)	0.0144 (10)	0.18462 (16)	0.0438 (12)
C8	0.6179 (9)	0.3428 (10)	0.09484 (17)	0.0479 (14)
H8A	0.7561	0.4046	0.1083	0.057*
H8B	0.5385	0.4845	0.0816	0.057*
C9	0.6627 (8)	0.1603 (10)	0.05923 (16)	0.0397 (12)
O1W	1.1399 (6)	-0.1149 (7)	0.06222 (12)	0.0539 (10)
H1A	1.1269	-0.2588	0.0711	0.065*
H1B	1.2722	-0.0835	0.0699	0.065*
O2W	1.2325 (5)	0.2871 (6)	0.00289 (11)	0.0469 (9)
H2A	1.3514	0.2751	-0.0076	0.056*
H2B	1.2014	0.4359	-0.0014	0.056*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0426 (6)	0.0316 (5)	0.0524 (6)	0.0037 (5)	0.0147 (4)	0.0050 (5)
01	0.046 (2)	0.045 (2)	0.056 (2)	0.0049 (18)	0.0188 (17)	0.0053 (18)
O2	0.059 (2)	0.050 (2)	0.067 (3)	0.016 (2)	0.0170 (19)	0.014 (2)
O3	0.045 (2)	0.036 (2)	0.050(2)	-0.0054 (16)	0.0131 (16)	0.0012 (16)
O4	0.052 (2)	0.032 (2)	0.053 (2)	0.0059 (16)	0.0225 (17)	0.0060 (17)
N1	0.049 (3)	0.038 (3)	0.043 (2)	0.000(2)	0.0105 (19)	0.001 (2)
C1	0.043 (3)	0.044 (3)	0.048 (3)	0.002 (3)	0.009 (2)	-0.003 (3)
C2	0.045 (3)	0.032 (3)	0.039 (3)	-0.002 (2)	0.006 (2)	-0.002 (2)
C3	0.042 (3)	0.044 (3)	0.055 (4)	0.001 (2)	0.003 (2)	-0.004 (3)
C4	0.058 (4)	0.047 (4)	0.062 (4)	0.006 (3)	-0.010 (3)	-0.006 (3)
C5	0.080 (5)	0.044 (4)	0.054 (4)	0.001 (3)	-0.006 (3)	0.006 (3)
C6	0.065 (4)	0.050 (4)	0.050 (4)	-0.009 (3)	0.009 (3)	0.010 (3)
C7	0.051 (3)	0.040 (3)	0.041 (3)	0.004 (3)	0.009 (2)	-0.004 (3)
C8	0.050 (3)	0.041 (3)	0.054 (3)	-0.006 (3)	0.016 (3)	0.006 (3)
C9	0.040 (3)	0.043 (3)	0.037 (3)	0.009 (2)	0.006 (2)	0.007 (2)
O1W	0.041 (2)	0.055 (2)	0.066 (3)	0.0016 (18)	0.0051 (18)	0.016 (2)
O2W	0.048 (2)	0.0305 (19)	0.064 (2)	0.0012 (16)	0.0170 (17)	0.0037 (17)

Geometric parameters (Å, °)

Zn1—O4 ⁱ	2.089 (3)	C3—C4	1.396 (8)
Zn1—O4	2.089 (3)	С3—НЗА	0.9300
Zn1—O2W	2.093 (3)	C4—C5	1.388 (8)
Zn1—O2W ⁱ	2.093 (3)	C4—H4A	0.9300
Zn1—O1W	2.113 (4)	C5—C6	1.378 (8)
Zn1—O1W ⁱ	2.113 (4)	C5—H5A	0.9300
O1—C1	1.364 (6)	С6—С7	1.351 (8)
O1—C7	1.389 (6)	С6—Н6А	0.9300
O2—C1	1.212 (6)	C8—C9	1.504 (7)
O3—C9	1.243 (6)	C8—H8A	0.9700
O4—C9	1.263 (6)	C8—H8B	0.9700
N1—C1	1.365 (6)	O1W—H1A	0.8218
N1—C2	1.384 (6)	O1W—H1B	0.8439
N1—C8	1.443 (6)	O2W—H2A	0.8249
C2—C3	1.379 (7)	O2W—H2B	0.8256
C2—C7	1.384 (7)		
O4 ⁱ —Zn1—O4	180.00 (15)	С4—С3—НЗА	121.8
O4 ⁱ —Zn1—O2W	91.20 (13)	C5—C4—C3	121.4 (6)
O4—Zn1—O2W	88.81 (13)	С5—С4—Н4А	119.3
O4 ⁱ —Zn1—O2W ⁱ	88.80 (13)	C3—C4—H4A	119.3
O4—Zn1—O2W ⁱ	91.20 (13)	C6—C5—C4	121.5 (6)
O2W—Zn1—O2W ⁱ	180.0	С6—С5—Н5А	119.3
O4 ⁱ —Zn1—O1W	92.02 (14)	С4—С5—Н5А	119.3

O4—Zn1—O1W	87.98 (14)	C7—C6—C5	116.6 (6)
O2W—Zn1—O1W	87.14 (14)	С7—С6—Н6А	121.7
O2W ⁱ —Zn1—O1W	92.86 (14)	С5—С6—Н6А	121.7
O4 ⁱ —Zn1—O1W ⁱ	87.98 (14)	C6—C7—C2	123.5 (5)
O4—Zn1—O1W ⁱ	92.02 (14)	C6—C7—O1	128.1 (5)
O2W—Zn1—O1W ⁱ	92.86 (14)	C2—C7—O1	108.4 (4)
O2W ⁱ —Zn1—O1W ⁱ	87.14 (14)	N1—C8—C9	114.4 (4)
O1W—Zn1—O1W ⁱ	180.0	N1—C8—H8A	108.7
C1—O1—C7	107.6 (4)	С9—С8—Н8А	108.7
C9—O4—Zn1	124.4 (3)	N1—C8—H8B	108.7
C1—N1—C2	109.0 (4)	С9—С8—Н8В	108.7
C1—N1—C8	125.0 (4)	H8A—C8—H8B	107.6
C2—N1—C8	126.0 (4)	O3—C9—O4	125.6 (5)
O2—C1—O1	121.4 (5)	O3—C9—C8	118.7 (4)
O2—C1—N1	130.0 (5)	O4—C9—C8	115.7 (5)
O1—C1—N1	108.5 (4)	Zn1—O1W—H1A	121.8
C3—C2—N1	132.8 (5)	Zn1—O1W—H1B	120.1
C3—C2—C7	120.7 (5)	H1A—O1W—H1B	102.2
N1—C2—C7	106.5 (4)	Zn1—O2W—H2A	123.4
C2—C3—C4	116.4 (5)	Zn1—O2W—H2B	123.4
С2—С3—НЗА	121.8	H2A—O2W—H2B	102.3
Symmetry adday (i) w12 yr -			

Symmetry codes: (i) -x+2, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
O2W—H2B···O4 ⁱⁱ	0.83	2.00	2.772 (5)	156
O1W—H1B···O3 ⁱⁱⁱ	0.84	1.92	2.699 (5)	153
O1W—H1A···O2 ^{iv}	0.82	2.07	2.799 (5)	148
~				

Symmetry codes: (ii) -*x*+2, -*y*+1, -*z*; (iii) *x*+1, *y*, *z*; (iv) *x*+1, *y*-1, *z*.

Fig. 2

Fig. 3

